Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{Bis[2-(3,5-dimethylpyrazol-1-yl)ethyl]amine- $\kappa^2 N.N'$ dichloridozinc(II) methanol solvate

Rae Eun Lee, Yeon Do Park and Jong Hwa Jeong*

Department of Chemistry Kyungpook National University, Taegu 702-701, Republic of Korea Correspondence e-mail: jeongjh@knu.ac.kr

Received 12 September 2007; accepted 1 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.028; wR factor = 0.082; data-to-parameter ratio = 16.7.

In the title compound, [ZnCl₂(C₁₄H₂₃N₅)]·CH₃OH, the Zn atom is coordinated by two N atoms and two Cl atoms in an approximately tetrahedral arrangement. The dihedral angle between the N–Zn–N and Cl–Zn–Cl planes is $89.69 (5)^{\circ}$. The methanol solvent molecule takes part in the formation of the hydrogen-bond system.

Related literature

For the synthesis of bis[2-(3,5-dimethylpyrazol-1-yl)ethyl]amine see: Sorrell & Malachowski, (1983). For related structures see: van Berkel et al. (1994); Ajellal et al. (2006); Pañella et al. (2006); Mendoza et al. (2006); Lian et al. (2007).

Experimental

Crystal data [ZnCl₂(C₁₄H₂₃N₅)]·CH₄O

 $M_r = 429.71$ Triclinic, P1 a = 9.3550 (6) Å b = 9.3562 (4) Å c = 13.3177 (7) Å $\alpha = 83.362 \ (4)^{\circ}$ $\beta = 72.448 \ (5)^{\circ}$

 $\gamma = 65.563 \ (4)^{\circ}$ $V = 1011.77 (10) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 1.49 \text{ mm}^{-1}$ T = 293 (2) K $0.45 \times 0.40 \times 0.35 \ \mathrm{mm}$

Data collection

Enrof Nonius CAD 4	2752 in doman dant noffections
Enrai–Nonius CAD-4	3/53 independent reflections
diffractometer	3209 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.008$
(ABSCALC; McArdle & Daly,	3 standard reflections
1999)	frequency: 60 min
$T_{\min} = 0.517, \ T_{\max} = 0.594$	intensity decay: 0.2%
4135 measured reflections	
Deference and	
Rennement	

,	
$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of
$wR(F^2) = 0.082$	independent and constrained
S = 1.04	refinement
3753 reflections	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
225 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D - H1O \cdots N5^{i}$ N3 $- H3N \cdots O^{ii}$	0.78 (4) 0.83 (3)	2.04 (4) 2.09 (2)	2.787 (3) 2.889 (3)	159 (3) 163 (2)

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 1, -z + 1.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD (McArdle, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2043).

References

- Ajellal, N., Kuhn, M. C. A., Boff, A. D. G., Hörner, M., Thomas, C. M., Carpentier, J.-F. & Casagrande, O. L. Jr (2006). Organometallics, 25, 1213-1216.
- Berkel, P. M. van, Driessen, W. L., Hämäläinen, R., Reedijk, J. & Turpeinen, U. (1994). Inorg. Chem. 33, 5920-5926.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, Netherland.
- Lian, B., Thomas, C. M., Casagrande, O. L. Jr, Lehmann, C. W., Rosinel, T. & Carpentier, J.-F. (2007). Inorg. Chem. 46, 328-340.
- McArdle, P. (1995). J. Appl. Cryst. 28, 65.
- McArdle, P. (1999). XCAD. National University of IrelandI, Galway, Ireland. McArdle, P. & Daly, P. (1999). ABSCALC. National University of IrelandI,
- Galway, Ireland. Mendoza, M. de los A., Bernès, S. & Mendoza-Díaz, G. (2006). Acta Cryst. E62, m2934-m2936.
- Pañella, A., Pons, J., García-Antón, J., Solans, X., Font-Bardia, M. & Ros, J. (2006). Eur. J. Inorg. Chem. pp. 1678-1685.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sorrell, T. N. & Malachowski, M. R. (1983). Inorg. Chem. 22, 1883-1887.

supplementary materials

Acta Cryst. (2007). E63, m2679 [doi:10.1107/S1600536807048179]

$\{Bis[2-(3,5-dimethylpyrazol-1-yl)ethyl]amine-\kappa^2N,N'\}dichloridozinc(II) methanol solvate$

R. E. Lee, Y. D. Park and J. H. Jeong

Comment

The ligand, bis[2–(3,5–dimethylpyrazol–1–yl)ethyl]amine, synthesized (Sorrell & Malachowski, 1983) and its complex of cobalt, copper or zinc was reported (van Berkel *et al.*, 1994). Nickel complex of the ligand was reported as an efficient catalyst for dimerization of enthylene to 1–butene (Ajellal *et al.*, 2006). Aluminium and zinc alkyl complexes bearing the ligand were synthesized and show the activities on polymerization of methyl methacrylate and lactide (Lian *et al.*, 2007). Also palladium complexes containing the ligand were reported (Pañella *et al.*, 2006; Mendoza *et al.*, 2006). In the title complex, the ligand acts as bidentate though it is a potential tridentate. However, the ligand was κ^3 bonding mode at zinc from reaction ZnCl₂–to–ligand ratio of 2:1 (van Berkel *et al.*, 1994). Herein, we report the crystal structure of Zn(II) complex containing bis[2–(3,5–dimethylpyrazol–1–yl)ethyl]amine as bidentate. The geometry around Zn(II) is an approximately tetrahedron. The dihedral angle between N—Zn—N and Cl—Zn—Cl planes is 89.69 (5)°.

The methanol solvate molecule takes part in the formation of H–bonds system: the hydroxo–group of one is a donor and acceptor in this system - see table of hydrogen–bond geometry.

Experimental

To bis {2–(3,5–dimethyl–1–pyrazolyl)ethyl} amine (1.67 g, 6.4 mmol) was added dropwise a solution of ZnCl₂ (0.87 g, 6.4 mmol) in methanol (20 ml). The mixture was stirred for 1 day at room temperature. The solvent was removed and the residue was washed with ether to give white solids. Colorless crystals was obtained from methanol solution. Yield; 1.63 g (64%). Anal. Calculated for C₁₅H₂₇Cl₂N₅OZn: C, 41.93; H, 6.33; N, 16.30. Found: C, 42.09; H, 6.24; N, 16.46%. ¹H NMR (DMSO–d₆); δ 5.97 (s, H-*Pz*), 4.20 (t, CH₂-*Pz*, J=6.0, 5.7 Hz), 3.07 (t, NCH₂–, J=5.7, 5.4 Hz), 2.25 (s, CH₃-*Pz*), 2.18 (s, CH₃-*Pz*), where *Pz* - pyrazolyl.

Refinement

All H atoms, except H atoms of hydroxy and amine groups, which were refined isotropically, were positioned geometrically and refined using a riding model, with C—H = 0.97Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂, and C—H = 0.96Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃ H atoms.

Figures

Fig. 1. A view of the dichlorido {bis[2–(3,5–dimethylpyrazol–1–yl)ethyl]amine– $\kappa^2 N,N$ }zinc with the numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are drawn as a spheres with arbitrary radius.

$Bis[2-(3,5-dimethylpyrazol-1-yl)ethyl]amine- \kappa^2 N, N' dichloridozinc(II) methanol solvate$

Crystal a	lata
-----------	------

$[ZnCl_2(C_{14}H_{23}N_5)] \cdot CH_4O$	Z = 2
$M_r = 429.71$	$F_{000} = 448$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.411 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
<i>a</i> = 9.3550 (6) Å	Cell parameters from 25 reflections
b = 9.3562 (4) Å	$\theta = 10.6 - 13.2^{\circ}$
c = 13.3177 (7) Å	$\mu = 1.49 \text{ mm}^{-1}$
$\alpha = 83.362 \ (4)^{\circ}$	T = 293 (2) K
$\beta = 72.448 \ (5)^{\circ}$	Block, colourless
$\gamma = 65.563 \ (4)^{\circ}$	$0.45\times0.40\times0.35~mm$
$V = 1011.77 (10) \text{ Å}^3$	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.008$
Radiation source: Fine-focus sealed tube	$\theta_{max} = 25.5^{\circ}$
Monochromator: Graphite	$\theta_{\min} = 1.6^{\circ}$
T = 293(2) K	$h = 0 \rightarrow 11$
Scintillation counter scans	$k = -10 \rightarrow 11$
Absorption correction: ψ scan (ABSCALC; McArdle & Daly, 1999)	$l = -15 \rightarrow 16$
$T_{\min} = 0.517, \ T_{\max} = 0.594$	3 standard reflections
4135 measured reflections	every 60 min
3753 independent reflections	intensity decay: 0.2%
3209 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.028$

 $wR(F^2) = 0.082$

S = 1.04

3753 reflections

225 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0529P)^2 + 0.1929P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.38 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.33 \text{ e } \text{Å}^{-3}$ Extinction correction: none

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Zn	0.50037 (3)	0.75209 (3)	0.161235 (17)	0.04246 (10)
C11	0.53380 (8)	0.54111 (7)	0.26152 (5)	0.06128 (16)
C12	0.27310 (8)	0.86417 (8)	0.10889 (5)	0.06388 (17)
N1	0.7028 (2)	0.7171 (2)	0.03740 (13)	0.0458 (4)
C1	0.7535 (3)	0.6476 (2)	-0.05640 (15)	0.0455 (4)
C2	0.6472 (3)	0.5905 (3)	-0.09021 (19)	0.0612 (6)
H2A	0.6768	0.4810	-0.0745	0.092*
H2B	0.6620	0.6053	-0.1646	0.092*
H2C	0.5348	0.6486	-0.0532	0.092*
C3	0.9078 (3)	0.6424 (2)	-0.10956 (16)	0.0480 (5)
H3	0.9703	0.5994	-0.1761	0.058*
C4	0.9508 (2)	0.7128 (2)	-0.04526 (15)	0.0426 (4)
C5	1.0994 (3)	0.7445 (3)	-0.06226 (18)	0.0572 (5)
H5A	1.0735	0.8541	-0.0760	0.086*
H5B	1.1834	0.6837	-0.1213	0.086*
H5C	1.1372	0.7163	-0.0004	0.086*
N2	0.8257 (2)	0.7571 (2)	0.04240 (12)	0.0435 (4)
C6	0.8102 (3)	0.8360 (3)	0.13570 (17)	0.0573 (6)
H6A	0.8966	0.8739	0.1202	0.069*
H6B	0.8250	0.7606	0.1921	0.069*
C7	0.6463 (3)	0.9729 (3)	0.17301 (18)	0.0551 (5)
H7A	0.6579	1.0460	0.2128	0.066*
H7B	0.6121	1.0276	0.1124	0.066*
N3	0.5195 (2)	0.9201 (2)	0.23970 (13)	0.0419 (4)
H3N	0.549 (3)	0.874 (3)	0.2914 (18)	0.039 (6)*
C8	0.3639 (3)	1.0539 (2)	0.28370 (16)	0.0469 (4)
H8A	0.3140	1.1054	0.2280	0.056*
H8B	0.3842	1.1296	0.3151	0.056*
С9	0.2496 (3)	0.9949 (3)	0.36641 (17)	0.0493 (5)
H9A	0.2168	0.9319	0.3324	0.059*
H9B	0.3074	0.9282	0.4151	0.059*
N4	0.1048 (2)	1.1224 (2)	0.42467 (13)	0.0476 (4)
N5	0.1135 (2)	1.1900 (2)	0.50638 (14)	0.0518 (4)
C10	-0.0371 (3)	1.2995 (3)	0.54475 (18)	0.0545 (5)
C11	-0.0740 (4)	1.3975 (4)	0.6380 (2)	0.0752 (8)
H11A	-0.1389	1.3647	0.6989	0.113*
H11B	-0.1332	1.5059	0.6244	0.113*
H11C	0.0266	1.3848	0.6503	0.113*
C12	-0.1397 (3)	1.3013 (3)	0.4873 (2)	0.0573 (6)
H12	-0.2497	1.3671	0.4984	0.069*
C13	-0.0471 (3)	1.1874 (3)	0.41129 (17)	0.0500 (5)
C14	-0.0908 (3)	1.1326 (3)	0.3282 (2)	0.0667 (6)
H14A	-0.0051	1.1154	0.2634	0.100*
H14B	-0.1911	1.2109	0.3180	0.100*
H14C	-0.1041	1.0363	0.3498	0.100*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

C15	0.4334 (4)	0.2736 (4)	0.4990 (3)	0.0890 (9)
H151	0.3527	0.3363	0.4636	0.134*
H152	0.5311	0.2085	0.4486	0.134*
H153	0.4579	0.3410	0.5342	0.134*
0	0.3734 (3)	0.1799 (3)	0.57224 (17)	0.0806 (6)
H1O	0.306 (4)	0.161 (4)	0.561 (3)	0.081 (10)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Zn	0.04342 (14)	0.04865 (15)	0.03929 (14)	-0.02289 (10)	-0.00885 (10)	-0.00452 (9)
Cl1	0.0659 (3)	0.0536 (3)	0.0568 (3)	-0.0239 (3)	-0.0080 (3)	0.0041 (2)
Cl2	0.0606 (3)	0.0711 (4)	0.0668 (4)	-0.0204 (3)	-0.0321 (3)	-0.0099 (3)
N1	0.0505 (9)	0.0558 (10)	0.0378 (8)	-0.0310 (8)	-0.0053 (7)	-0.0068 (7)
C1	0.0583 (12)	0.0434 (10)	0.0379 (10)	-0.0248 (9)	-0.0102 (9)	-0.0027 (8)
C2	0.0751 (16)	0.0703 (15)	0.0517 (13)	-0.0436 (13)	-0.0101 (11)	-0.0144 (11)
C3	0.0528 (11)	0.0489 (11)	0.0370 (10)	-0.0184 (9)	-0.0052 (9)	-0.0075 (8)
C4	0.0410 (10)	0.0439 (10)	0.0379 (9)	-0.0133 (8)	-0.0089 (8)	-0.0004 (8)
C5	0.0402 (11)	0.0761 (15)	0.0513 (12)	-0.0205 (10)	-0.0072 (9)	-0.0100 (11)
N2	0.0427 (9)	0.0531 (9)	0.0376 (8)	-0.0223 (7)	-0.0086 (7)	-0.0056 (7)
C6	0.0487 (12)	0.0872 (16)	0.0444 (11)	-0.0358 (11)	-0.0048 (9)	-0.0203 (11)
C7	0.0607 (13)	0.0643 (13)	0.0478 (11)	-0.0389 (11)	0.0015 (10)	-0.0180 (10)
N3	0.0440 (9)	0.0495 (9)	0.0341 (8)	-0.0211 (7)	-0.0085 (7)	-0.0038 (7)
C8	0.0506 (11)	0.0474 (11)	0.0410 (10)	-0.0201 (9)	-0.0075 (9)	-0.0055 (8)
C9	0.0449 (11)	0.0507 (11)	0.0452 (11)	-0.0157 (9)	-0.0076 (9)	0.0000 (9)
N4	0.0407 (9)	0.0569 (10)	0.0405 (9)	-0.0157 (8)	-0.0098 (7)	-0.0015 (7)
N5	0.0438 (9)	0.0649 (11)	0.0437 (9)	-0.0197 (8)	-0.0098 (8)	-0.0035 (8)
C10	0.0470 (11)	0.0623 (13)	0.0500 (12)	-0.0243 (10)	-0.0023 (9)	-0.0046 (10)
C11	0.0654 (16)	0.0877 (19)	0.0651 (16)	-0.0284 (14)	-0.0016 (13)	-0.0250 (14)
C12	0.0377 (10)	0.0615 (13)	0.0662 (14)	-0.0155 (10)	-0.0108 (10)	-0.0020 (11)
C13	0.0426 (11)	0.0608 (13)	0.0502 (12)	-0.0249 (10)	-0.0145 (9)	0.0077 (10)
C14	0.0623 (15)	0.0826 (17)	0.0657 (15)	-0.0330 (13)	-0.0271 (12)	0.0016 (13)
C15	0.091 (2)	0.102 (2)	0.098 (2)	-0.0493 (19)	-0.0520 (19)	0.0208 (19)
0	0.0804 (13)	0.1126 (17)	0.0730 (13)	-0.0492 (13)	-0.0461 (11)	0.0182 (11)

Geometric parameters (Å, °)

Zn—N1	2.0349 (16)	N3—H3N	0.83 (2)
Zn—N3	2.0787 (17)	C8—C9	1.516 (3)
Zn—Cl1	2.2158 (6)	C8—H8A	0.9700
Zn—Cl2	2.2330 (6)	C8—H8B	0.9700
N1—C1	1.335 (2)	C9—N4	1.450 (3)
N1—N2	1.369 (2)	С9—Н9А	0.9700
C1—C3	1.386 (3)	С9—Н9В	0.9700
C1—C2	1.497 (3)	N4—C13	1.354 (3)
C2—H2A	0.9600	N4—N5	1.359 (3)
C2—H2B	0.9600	N5—C10	1.337 (3)
C2—H2C	0.9600	C10-C12	1.391 (3)
C3—C4	1.374 (3)	C10—C11	1.498 (3)

С3—Н3	0.9300	C11—H11A	0.9600
C4—N2	1.338 (2)	C11—H11B	0.9600
C4—C5	1.485 (3)	C11—H11C	0.9600
С5—Н5А	0.9600	C12—C13	1.366 (3)
С5—Н5В	0.9600	C12—H12	0.9300
С5—Н5С	0.9600	C13—C14	1.494 (3)
N2—C6	1.458 (3)	C14—H14A	0.9600
C6—C7	1.517 (3)	C14—H14B	0.9600
С6—Н6А	0.9700	C14—H14C	0.9600
С6—Н6В	0.9700	С15—О	1.383 (4)
C7—N3	1.479 (3)	C15—H151	0.9600
С7—Н7А	0.9700	C15—H152	0.9600
С7—Н7В	0.9700	C15—H153	0.9600
N3—C8	1.476 (3)	0—H10	0.78 (3)
N1—Zn—N3	97.10 (6)	C8—N3—H3N	105.1 (15)
N1—Zn—Cl1	111.06 (5)	C7—N3—H3N	108.8 (15)
N3—Zn—Cl1	107.94 (5)	Zn—N3—H3N	104.9 (15)
N1—Zn—Cl2	110.94 (5)	N3—C8—C9	109.32 (17)
N3—Zn—Cl2	108.51 (5)	N3—C8—H8A	109.8
Cl1—Zn—Cl2	118.95 (3)	С9—С8—Н8А	109.8
C1—N1—N2	105.84 (16)	N3—C8—H8B	109.8
C1—N1—Zn	132.04 (15)	С9—С8—Н8В	109.8
N2—N1—Zn	121.97 (12)	H8A—C8—H8B	108.3
N1—C1—C3	109.52 (18)	N4—C9—C8	112.15 (18)
N1—C1—C2	120.74 (19)	N4—C9—H9A	109.2
C3—C1—C2	129.74 (19)	С8—С9—Н9А	109.2
C1—C2—H2A	109.5	N4—C9—H9B	109.2
C1—C2—H2B	109.5	С8—С9—Н9В	109.2
H2A—C2—H2B	109.5	Н9А—С9—Н9В	107.9
C1—C2—H2C	109.5	C13—N4—N5	111.80 (17)
H2A—C2—H2C	109.5	C13—N4—C9	129.17 (19)
H2B—C2—H2C	109.5	N5—N4—C9	119.02 (17)
C4—C3—C1	106.98 (17)	C10—N5—N4	105.05 (18)
С4—С3—Н3	126.5	N5-C10-C12	110.4 (2)
С1—С3—Н3	126.5	N5-C10-C11	119.9 (2)
N2—C4—C3	106.46 (18)	C12-C10-C11	129.6 (2)
N2	122.74 (19)	C10-C11-H11A	109.5
C3—C4—C5	130.78 (19)	C10-C11-H11B	109.5
C4—C5—H5A	109.5	H11A—C11—H11B	109.5
C4—C5—H5B	109.5	C10—C11—H11C	109.5
H5A—C5—H5B	109.5	H11A—C11—H11C	109.5
C4—C5—H5C	109.5	H11B—C11—H11C	109.5
H5A—C5—H5C	109.5	C13—C12—C10	106.5 (2)
H5B—C5—H5C	109.5	C13—C12—H12	126.7
C4—N2—N1	111.20 (16)	C10—C12—H12	126.7
C4—N2—C6	128.46 (17)	N4—C13—C12	106.2 (2)
N1—N2—C6	120.34 (16)	N4—C13—C14	122.7 (2)
N2—C6—C7	113.19 (19)	C12—C13—C14	131.1 (2)
N2—C6—H6A	108.9	C13-C14-H14A	109.5

supplementary materials

С7—С6—Н6А	108.9	C13—C14—H14B		109.5
N2—C6—H6B	108.9	H14A—C14—H14B		109.5
С7—С6—Н6В	108.9	C13—C14—H14C		109.5
H6A—C6—H6B	107.8	H14A—C14—H14C		109.5
N3—C7—C6	111.62 (19)	H14B—C14—H14C		109.5
N3—C7—H7A	109.3	O-C15-H151		109.5
С6—С7—Н7А	109.3	O-C15-H152		109.5
N3—C7—H7B	109.3	H151—C15—H152		109.5
С6—С7—Н7В	109.3	O-C15-H153		109.5
H7A—C7—H7B	108.0	H151—C15—H153		109.5
C8—N3—C7	111.73 (17)	Н152—С15—Н153		109.5
C8—N3—Zn	114.97 (13)	С15—О—Н1О		116 (2)
C7—N3—Zn	110.82 (12)			
N3—Zn—N1—C1	-164.96 (19)	C6—C7—N3—C8		175.01 (17)
Cl1—Zn—N1—C1	82.7 (2)	C6—C7—N3—Zn		-55.4 (2)
Cl2—Zn—N1—C1	-52.0 (2)	N1—Zn—N3—C8		137.79 (14)
N3—Zn—N1—N2	20.20 (16)	Cl1—Zn—N3—C8		-107.31 (13)
Cl1—Zn—N1—N2	-92.17 (15)	Cl2—Zn—N3—C8		22.86 (15)
Cl2—Zn—N1—N2	133.17 (14)	N1—Zn—N3—C7		9.90 (16)
N2—N1—C1—C3	0.6 (2)	Cl1—Zn—N3—C7		124.80 (15)
Zn—N1—C1—C3	-174.84 (15)	Cl2—Zn—N3—C7		-105.03 (15)
N2—N1—C1—C2	-178.83 (19)	C7—N3—C8—C9		-169.66 (18)
Zn—N1—C1—C2	5.7 (3)	Zn—N3—C8—C9		62.9 (2)
N1—C1—C3—C4	-0.5 (2)	N3—C8—C9—N4		170.79 (17)
C2—C1—C3—C4	178.9 (2)	C8—C9—N4—C13		98.9 (3)
C1—C3—C4—N2	0.1 (2)	C8—C9—N4—N5		-82.3 (2)
C1—C3—C4—C5	-178.0 (2)	C13—N4—N5—C10		0.1 (2)
C3—C4—N2—N1	0.2 (2)	C9—N4—N5—C10		-178.89 (19)
C5—C4—N2—N1	178.60 (19)	N4—N5—C10—C12		-0.3 (3)
C3—C4—N2—C6	179.6 (2)	N4—N5—C10—C11		179.1 (2)
C5—C4—N2—C6	-2.1 (3)	N5-C10-C12-C13		0.3 (3)
C1—N1—N2—C4	-0.5 (2)	C11—C10—C12—C13		-179.0 (3)
Zn—N1—N2—C4	175.48 (13)	N5-N4-C13-C12		0.0 (2)
C1—N1—N2—C6	-179.9 (2)	C9—N4—C13—C12		178.9 (2)
Zn—N1—N2—C6	-3.9 (3)	N5-N4-C13-C14		-178.8 (2)
C4—N2—C6—C7	133.5 (2)	C9—N4—C13—C14		0.1 (4)
N1—N2—C6—C7	-47.2 (3)	C10-C12-C13-N4		-0.2 (3)
N2-C6-C7-N3	83.4 (2)	C10—C12—C13—C14		178.5 (2)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H…A

0.78 (4)

0.83 (3)

2.04 (4)

2.09 (2)

2.787 (3)

2.889 (3)

159 (3)

163 (2)

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1, -*y*+1, -*z*+1.

 $O - H1O \cdots N5^i$

N3—H3N…Oⁱⁱ

